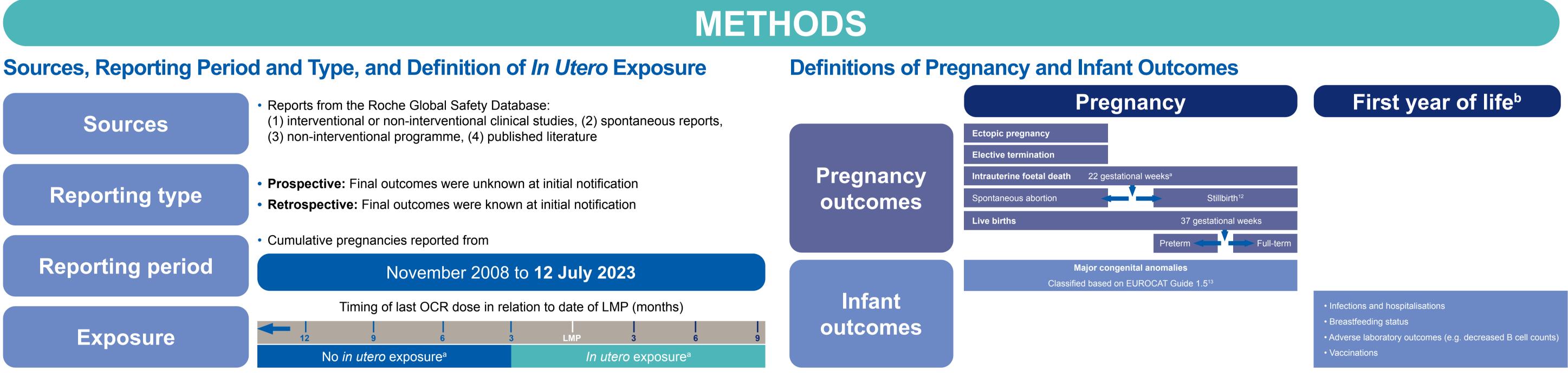
Pregnancy and Infant Outcomes in Women Receiving Ocrelizumab for the Treatment of Multiple Sclerosis: Analysis of the Largest Available Outcomes Database

K Hellwig,¹ C Oreja-Guevara,² S Vukusic,³ C Pietrasanta,⁴ T McElrath,⁵ R Dobson,⁶ L Craveiro,⁷ G Ferreira,⁷ D Goncalves Pereira Alves,⁷ CJ Lin,⁸ N Pasquarelli,⁷ D Zecevic,⁷ R Bove⁹


⁵Katholisches Klinikum Bochum, St. Josef Hospital, Universitätsklinikum, Bochum, Germany; ²Neurology, Hospital Clínico San Carlos, Idissc, Madrid, Spain; ³Service de Neurologie et Sclérose en Plaques, Fondation Eugène Devic EDMUS contre la Sclérose en Plaques, Hôpital Neurologique Pierre Wertheimer, Lyon, France; 4NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; 5Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Boston, MA, USA; ⁶Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, UK ⁷F. Hoffmann-La Roche Ltd, Basel, Switzerland; ⁸Roche Products Ltd, Welwyn Garden City, UK; ⁹Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.

OBJECTIVE

To report on pregnancy and infant outcomes among women with MS exposed to ocrelizumab before or during pregnancy up to July 2023

CONCLUSIONS

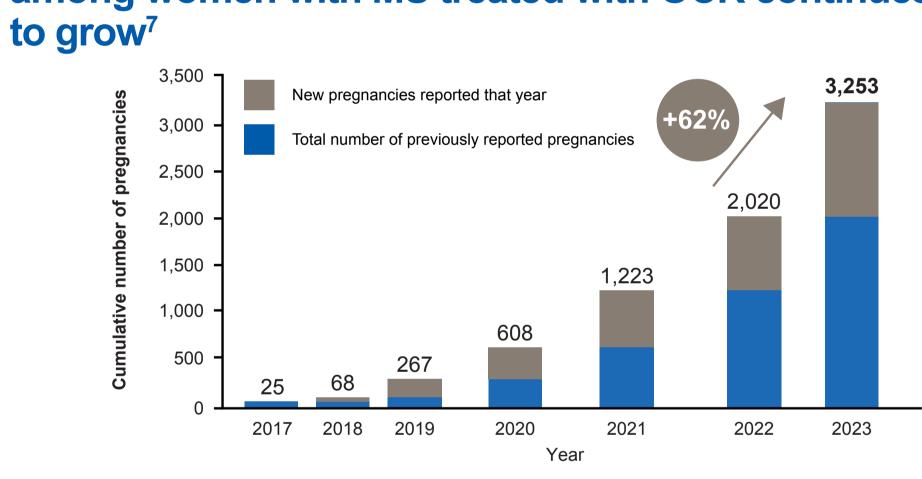
- In utero exposure to ocrelizumab did not increase the risk of adverse pregnancy or infant outcomes compared with epidemiological background of both MS and general population¹⁻⁶ \bullet
- This is the largest dataset of pregnancy outcomes for an anti-CD20 therapy in MS⁷
- Reports of infant outcomes throughout the first year of life are very limited; continuous improvement of reporting by healthcare professionals remains a critical component to increase available evidence
- Pregnancy and infant outcomes are important to women with MS. Patients and data continue to be collected through post-marketing commitments (OCREVUS pregnancy) registry)⁸ and two prospective Phase IV studies examining infant B cell levels and ocrelizumab pharmacokinetics across the placenta (MINORE, MN42988) and breastmilk (SOPRANINO, MN42989)⁹

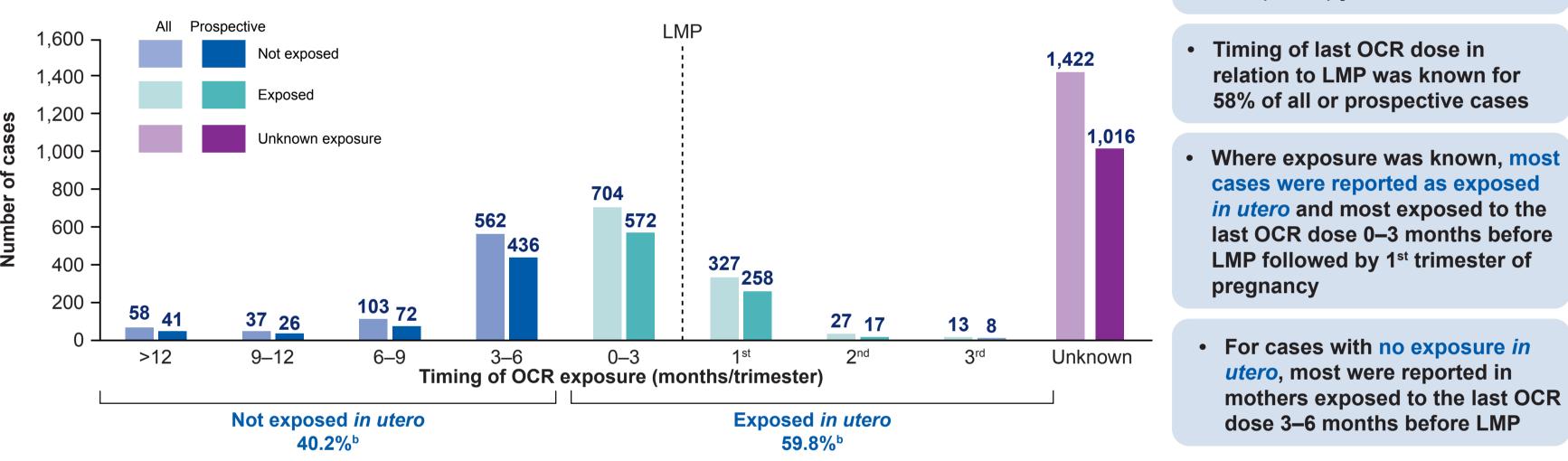
^aExposure classification is based on OCR t¹/₂=26 days (full elimination from the body is expected by approximately 4.5 months) and assuming no relevant placental transfer of IgG1 antibodies occurs prior to 12 weeks of gestation.^{10,11}

In utero exposure: The last OCR infusion was received <3 months prior to the LMP or throughout pregnancy. No *in utero* exposure: The last OCR infusion as received >3 months prior to the LMP or throughout pregnancy. the LMP. Unknown exposure: Where the exposure timing could not be determined, or was missing

According to EMA definition⁶ (other definitions use different thresholds, e.g. 20 or 24 completed weeks); ^bCollected via guided questionnaires provided at birth and at 3, 6 and 12 months of age for follow-up.

EMA, European Medicines Agency; EUROCAT, European Surveillance of Congenital Anomalies.


IgG1, immunoglobulin G1; LMP, last menstrual period; OCR, ocrelizumab; t₄, half-life.


RESULTS

The cumulative number of pregnancies reported among women with MS treated with OCR continues MS Pregnancies by *In Utero* Exposure:^a All Cases and Prospective Cases

Median age at LMP (range) was 32.0 (16–60) years^c

P061

There was a 62% increase in the number of cases from 2022 to 2023

^aDetermined according to timing of last OCR dose in relation to date of LMP (months); exposure classification is based on OCR t₁=26 days (full elimination from the body is expected by approximately 4.5 months) and assuming no relevant placental transfer of IgG1 antibodies occurs prior to 12 weeks of gestation; Percentages represent fractions of prospective cases with known outcome and known timing of last OCR dose. Cases with known age: n=2,676 (82.3%).

IgG1, immunoglobulin G1; LMP, last menstrual period; OCR, ocrelizumab; t_{μ} , half-life.

MS, multiple sclerosis; OCR, ocrelizumab

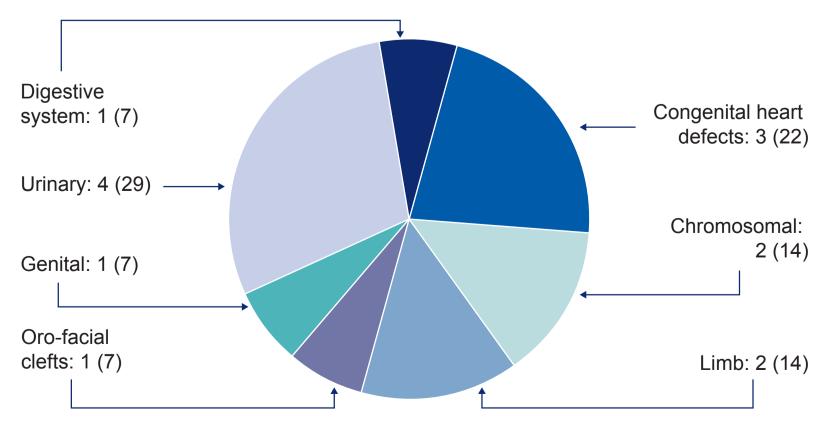
Pregnancy Outcomes by Exposure in Prospective Cases^a

- Most pregnancies resulted in live births (83.6%), and proportions were similar in the exposed and non-exposed groups
- Most live births were full term (61.4%) and a smaller proportion were preterm (8.5%)
- Proportions were similar in the exposed and non-exposed groups ____
- Gestational age was unknown in 30.2% of cases
- A higher proportion of elective terminations occurred in the exposed group, but the overall cumulative proportion of elective abortions is decreasing (5.1% in 2023 vs 11.5% in 2022 and 15.7% in 2021)⁷
- A smaller proportion of spontaneous abortions occurred in the exposed group (7.4%) compared with the non-exposed group (9.1%)
- The overall rate of **stillbirths** (<0.1%) remained low

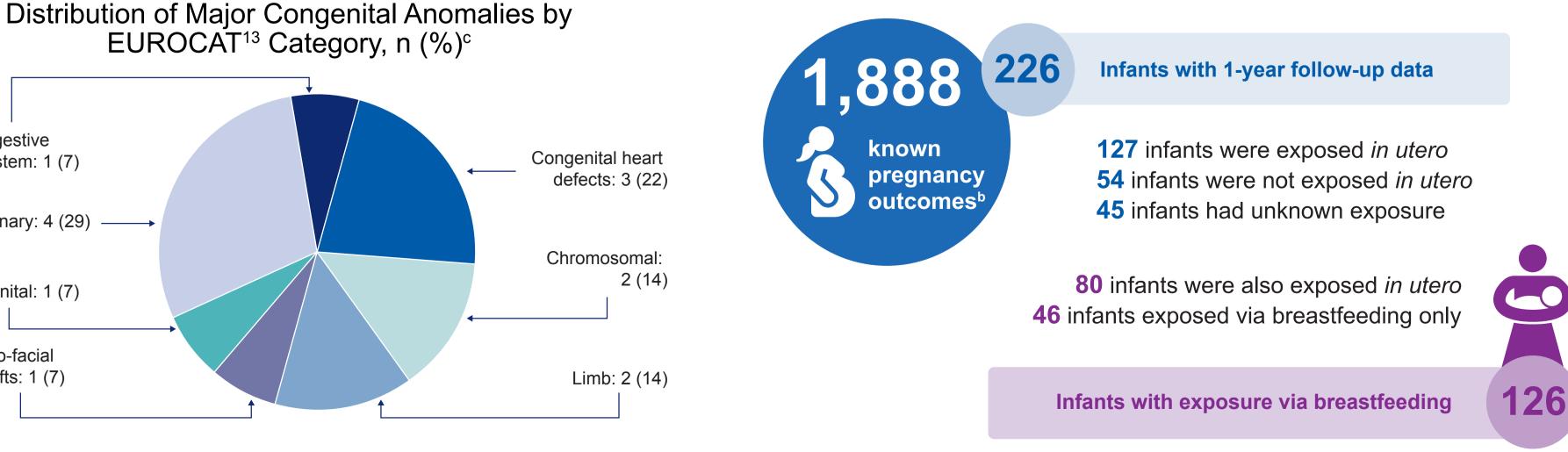
Number of MS pregnancies	Non-exposed (N=575)	Exposed (N=855)	Unknown (N=1,016)	Total (N=2,446)	Epidemiological rates			
Known outcomes	n=351	n=512	n=282	n=1,145	MS background rate	General population background rate		
Live births ^b	88.3%	84.2%	76.6%	83.6%	70.2-77.21	70.21		
Full term (≥37 weeks)º	70.9%	65.7%	9.1%	61.4%	-	-		
Preterm (<37 weeks)°	• 8.4%	• 9.5%	• 6.5%	• 8.5%	• 7.2–15.4 ^{1–4}	• 6.5–10.4 ^{1-2, 4}		
Unknown gestational age ^c	• 20.7%	• 24.8%	54.4%	30.2%	-	-		
Ectopic pregnancy ^b	• 0.9%	• 0.8%	• 2.5%	• 1.2%	• 0.6–1.3 ^{1,2}	• 1.1–2.0 ^{1,2}		
Elective termination ^b	• 1.7%	• 7.4%	• 5.0%	• 5.1%	10.7–18.1 ¹	18.2 ¹		
Intrauterine foetal death ^b								
Spontaneous abortion, ≤22 weeks ^ь	• 9.1%	• 7.4%	• 16.0%	• 10.0%	■ 10.5–11.6 ^{1–3}	• 10.0–20.0 ^{1,2}		
Stillbirth, >22 weeks ^₅	_	• 0.2%	_	· <0.1%	• 0.3–0.6 ^{1,4}	• 0.2–0.7 ^{1,4}		

The dash indicates that no cases were reported; Please see Supplementary Materials for details on all cases, pregnancy outcomes by more granular timings of OCR exposure and listing of stillbirths.

^aIn utero exposure based on timing of last OCR dose relative to LMP: ^bPercentages represent fractions of the total live births for the respective exposure categories (not exposed in utero, unknown exposure, total).


LMP, last menstrual cycle; MS, multiple sclerosis; OCR, ocrelizumab.

Major Congenital Anomalies in Pregnancies with Known Outcomes


Proportions and types are consistent with epidemiological background¹⁻⁶

	Non-exposed	Exposed	Unknown exposure	Total
Live births	N=310	N=431	N=216	N=957
Live birth with MCA, n (%) ^a	4 (1.3%)	7 (1.6%)	1 (0.5%)	12 (1.3%)
Full term with MCA, n	3	4	1	8
Preterm with MCA, n	1	3	_	4
Unknown GA with MCA, n	-	_	_	-
Stillbirths >22 weeks	N=0	N=1	N=0	N=1
Stillbirth with MCA, n	-	1	-	1
Live birth/stillbirth with MCA, n (%) ^ь	4 (1.3%)	8 (1.9%)	1 (0.5%)	13 (1.4%)

Around 2–4% of all children born every year will have a MCA^{1–5}

Reports of Infant Outcomes Throughout the First Year of Life are Very Limited^a

Please see Supplementary Materials for details on the listing of major congenital anomalies. The dash indicates that no cases were reported

^aPercentages represent fractions of total live births for the respective exposure category; ^bPercentages represent fractions of the total stillbirths/live births for the respective exposure category; ^cThe number of major congenital anomalies prospectively reported is 14, as one live birth reported two MCAs; see Supplementary Materials for all cases EUROCAT, European Surveillance of Congenital Anomalies; GA, gestational age; MCA, major congenital anomaly.

^aFor further details, see the Supplementary Materials. ^bIncludes all known outcomes, either prospectively or retrospectively reported.

REFERENCES

- 1. Anderson JB, et al. Eur J Neurol 2022; 30 (1): 162–171;
- 2. Khan E, et al. J Neuroimmunol 2023; 24; 383: 578178;
- 3. Lopez-Leon S, et al. J Neurol 2020; 267(9): 2721–2731;
- 4. MacDonald SC, et al. Am J Epidemiol 2019; 1;188 (1): 57–66;
- 5. Centers for Disease Control and Prevention (CDC). *MMWR Morb Mortal Wkly Rep* 2008;57:1–5. Available from: https:// www.cdc.gov/mmwr/preview/mmwrhtml/mm5701a2.htm.
- Accessed: September 2023; 6. European Medicines Agency (EMA). Guideline on the Exposure to Medicinal Products During Pregnancy: Need for Post-Authorisation data. November 2005. Available from: https://www.ema.europa.eu/en/documents/regulatoryprocedural-guideline/guideline-exposure-medicinal-productsduring-pregnancy-need-post-authorisation-data_en.pdf.

7. Oreja-Guevara C, et al. ECTRIMS 2022;PO038; 8. OCREVUS® Pregnancy Registry. 2021. Available from: https://www.ocrevuspregnancyregistry.com/. Accessed

September 2023; 9. Bove R, et al. Mult Scler Relat Disord 2022;64:103963; 10.Palmeira P, et al. Clin Dev Immunol 2012;2012:985646: 11. Simister NE. Vaccine 2003;21:3365-3369; 12. Tavares Da Silva F, et al. Vaccine 2016;34:6057-6068; 13. European Surveillance of Congenital Anomalies (EUROCAT) Guide 1.5. Available from: https://eu-rdplatform.jrc.ec.europa.eu/eurocat/data-collection/guidelinesfor-data-registration en Accessed September 2023.

DISCLOSURES

Sponsored by F. Hoffmann-La Roche Ltd; writing and editorial assistance provided by Bridge Medical Consulting Pvt Ltd.

K Hellwig received grant/contract support, consulting fees, honoraria and/or compensation from the Federal Innovationsfonds, National MS Society in Germany, Almiral Bayer, Biogen, Sanofi, Teva, F. Hoffmann-La Roche Ltd, Novartis and Merck. C Oreja-Guevara received honoraria for consulting and serving on advisory boards from Biogen Idec., F. Hoffmann-La Roche Ltd, Genzyme, Merck, Novartis and Teva. **S Vukusic** received grants and research support from Biogen, Novartis, Merck-Serono, F. Hoffmann-La Roche Ltd and Sanofi-Genzyme; consulting fees from F. Hoffmann-La Roche Ltd, Biogen, BMS-Celgene, Janssen, Novartis, Merck-Serono, Sanofi-Genzyme and Teva; and payment/honoraria for lectures, speaking etc. from F. Hoffmann-La Roche Ltd, Biogen, BMS-Celgene, Novartis, Merck-Serono, Sanofi-Genzyme and Teva. C Pietrasanta received consulting fees from F. Hoffmann-La Roche Ltd. T McElrath received research support from the National Institutes of Health and NX Prenatal Inc. compensation for service on the scientific advisory boards of Mirvie Inc., F. Hoffmann-La Roche Ltd and Momenta Pharmaceuticals, Inc. and consulting fees from F. Hoffmann-La Roche Ltd and Comanche Biopharma. R Dobson received research support from Multiple Sclerosis Society UK, Horne Family Foundation, Barts Charity, Merck, Biogen and Celgene; consulting fees from F. Hoffmann-La Roche Ltd, Novartis, Janssen and Biogen (all payments made are institutional and used to support research/educational activities); honoraria for lectures, speaking etc. from Biogen, F. Hoffmann-La Roche Ltd, Sanofi-Genzyme, Merck, Novartis, Janssen and Teva; support for attending meetings and/or travel from Novartis, Biogen and Janssen (all payments made are institutional and used to support research/educational activities); and is part of the Association of British Neurologists MS Advisory Group. L Craveiro is an employee of and shareholder in F. Hoffmann-La Roche Ltd. G Ferreira is a consultant for F. Hoffmann-La Roche Ltd. D Goncalves Pereira Alves is an employee of and shareholder in F. Hoffmann-La Roche Ltd. C-J Lin is an employee of and shareholder in F. Hoffmann-La Roche Ltd. N Pasquarelli is an employee of and shareholder in F. Hoffmann-La Roche Ltd. D Zecevic is an employee of and shareholder in F. Hoffmann-La Roche Ltd. **R Bove** received research support from the National Institutes of Health, National Multiple Sclerosis Society, Hilton Foundation, California Initiative to Advance Precision Medicine, Tom Sherak Foundation, Biogen, Novartis and F. Hoffmann-La Roche Ltd/Genentech; and personal compensation for consulting from Alexion, Biogen, EMDSerono, Novartis, Sanofi-Genzyme, F. Hoffmann-La Roche Ltd/Genentech and TG Therapeutics.

ACKNOWLEDGEMENTS

We would like to thank all patients, their families and the investigators participating in this study. This study is sponsored by F. Hoffmann-La Roche Ltd, Basel, Switzerland. Writing and editorial assistance for this presentation was provided by Articulate Science, UK, and funded by F. Hoffmann-La Roche Ltd, Basel, Switzerland.